Испускание электронов накаленными металлами

Опыты с простыми радиолампами показывают, что раскаленная нить накала служит источником некоего переносчика тока, способного поддерживать ток в одном направлении — от нити накала к аноду. Это имеет место даже в том случае, если в лампе создан самый высокий вакуум — идеальный изолятор, разделяюотрицательные носители тока, движутся и те, и другие, разумеется, в противоположных направлениях. Существуют, кроме того, положительные электроны, которые движутся в направлении стрелок (пока не исчезают в результате гибельного столкновения с отрицательными электронами).

 

 

Наконец, в некоторых кристаллических полупроводниках мы находим так называемые «дырки» — места в кристалле, не занятые электронами. Электрон из другого места кристалла может пойти по направлению к «дырке» и заполнить «пустое место», оставив пустое место там, где он ранее находился. Таким образом, «дырки» могут перемещаться так, как будто перемещаются положительные заряды.

щий нить накала и анод. Поскольку ток есть движение зарядов, в лампе должны появляться какие-то носители тока, обладающие электрическим зарядом. При холодной нити никакого тока нет: эффект прохождения тока наблюдается только, когда нить раскалена. Таким образом, мы приходим к предположению, что носители тока испускаются нитью.Миллиамперметр и вольтметр говорят нам, что если эти носители перемещаются от нити накала к аноду, то они должны обладать отрицательным зарядом. Ток через лампу условно рассматривается как ток положительных зарядов, текущий от анода к нити накала, направление этого тока считается положительным; говорят также об отрицательном токе в направлении от нити накала к аноду. Разность потенциалов, обусловливающая этот ток, приложена так, что анод положителен, а нить накала отрицательна. Поэтому электрическое поле притягивает отрицательные заряды от нити накала к аноду. Если изменить направление приложенной разности потенциалов, то никакого тока н,е будет, носители будут испытывать действие силы, направленной в сторону нити накала, и не смогут двигаться. Мы называем эти носители тока отрицательными электронами или просто электронами.

 

По-видимому, в раскаленной металлической нити накала есть свободные электроны, которые движутся с большой скоростью и могут вылетать за пределы нити, подобно молекулам, испаряющимся из жидкости. Электроны способны вырваться из металла только в том случае, если соседние атомы смогут сообщить им достаточное количество добавочной энергии, когда металл достаточно нагрет. Чтобы заставить металл испускать электроны, необязательно нагревать его электрическим током. Полоска листового вольфрама, если нагреть ее в пламени небольшой газовой горелки, будет точно так же испускать электроны. Во многих современных радиолампах применяется так называемый косвенный подогрев. В этом случае накаленный поверхностный слой, который испускает электроны,— катод  разогревается маленьким электрическим подогревателем, находящимся в непосредственной близости к нему. Обычно катод имеет вид трубки, внутри которой проходит проволочный подогреватель. Катод часто покрывают слоем особого состава из смеси окислов, благодаря которому электроны интенсивно испаряются при сравнительно низкой температуре.

 

Мы будем в дальнейшем изображать радиолампы с отдельным катодом К и подогревателем НН.

Автор Эрик Роджерс “Физика для любознательных”

Раздел электростатика

На главную

ДРУГИЕ НАШИ ПРОЕКТЫ

Интересные  игрушки

Поделки дома

А Вам слабо?

Своими руками с детьми

От дачи до дома

Что готовите?

Оставить комментарий:

XHTML: Вы можете использовать теги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>