Инфракрасный глаз

Любое тело, если оно теплее окружающей среды, можно увидеть в тепловых инфракрасных лучах. По своей природе это тот же свет, только длина волны его в сотни раз больше. Некоторые змеи различают тела с температурой всего лишь на 0,1°С выше, чем у окружающей среды. В головных частях ракет тоже есть «инфракрасный глаз», наводящий ракету на излучение самолета. Состоит он из нескольких десятков фототранзисторов, работающих при минусовых температурах. Охлаждают их при запуске с помощью очень простого и остроумного газового устройства.

Делать «глаз» ракеты мы вам не предлагаем, однако построить несложный инфракрасный глаз может оказаться интересно и полезно. Зачем?
Сегодня появилось множество электроприборов, потребляющих солидную мощность, — чайники, печи СВЧ, стиральные машины. Когда все они включаются одновременно, то неисправная электропроводка, как справедливо говорят пожарники, может стать причиной пожара. А нужно ли это вам?
К счастью, неисправные места выдают себя инфракрасным излучением. Его-то и может обнаружить самодельный «инфракрасный глаз». Но пригодится он не только для этого.


Обычно в лесу мы ориентируемся по солнцу. Если погода пасмурная, то, как предлагается в пособиях, нужно ориентироваться по всевозможным лесным приметам. Попробуйте! Вы сразу же увидите, что мхи, грибы и ветки деревьев пособий не читают и растут как попало. Обучиться искусству ориентации в лесу по приметам удастся примерно с десятого раза, да и то, если вас будет обучать опытный человек.

С «инфракрасным глазом», однако, вы мгновенно найдете солнце по тепловому излучению, проходящему сквозь любые облака.
И наконец, сочетание «инфракрасного глаза» и электрической лампочки, закрашенной в черной цвет, позволяет построить отличную охранную систему, которая обойдется вам примерно в тысячу раз дешевле, чем покупная.

Электрическая схема «инфракрасного глаза» приведена на рисунке 1. Его задача — определять не абсолютный уровень излучения, а сам факт его присутствия, что сравнивается с «поведением» соседних мест, где появление ненормального нагрева исключено в принципе. Поэтому прибор не нуждается в калибровке.

Собран он по балансно-мостовой схеме, в плечах которой имеются резисторы R2, R4 и транзисторы VТ1, VТ2. В общую эмиттерную цепь поставлен переменный резистор RЗ. Отпирающее смещение на транзистор VТ1 поступает от источника питания GВ1 через резистор R1, создавая на коллекторе VТ1 напряжение порядка 2 В.

Транзистор VТ2 имеет регулируемое смещение, которое управляется переменным резистором R6, введенным в базовый делитель транзистора. В диагональ моста включен стрелочный индикатор Р1 уровня записи типа М476/1 от любого старого магнитофона. Это весьма чувствительный прибор с током полного отклонения всего 0,11 мА.

Когда степень открытого состояния и уровня коллекторных напряжений транзисторов одинаковы, ток через рамку индикатора не протекает и его стрелка находится в нулевом положении. Нарушение равновесного состояния заставляет стрелку отклоняться в той или иной степени.

«Возмутителем спокойствия» измерительного мостика служит инфракрасный (ИК) нагрев транзистора VТ1. В этом случае транзистор VТ1 действует как болометр — прибор, реагирующий на собственный нагрев. А наше устройство в целом сможет «ощущать» не только инфракрасное излучение во всем его диапазоне, но и сантиметровые радиоволны. Транзистор VТ1 должен иметь черный корпус, германиевый тип и достаточно высокий коэффициент передачи тока. При таком сочетании характеристик и отсутствии стабилизации рабочей точки транзистора в наибольшей степени проявляется зависимость коллекторного тока и напряжения на транзисторе от его нагрева инфракрасным излучением.

Возникающая «тепловая» добавка этого тока, создавая дополнительное падение напряжения на эмиттерном резисторе RЗ, дополнительно запирает транзистор vТ2 и увеличивает «перекос» коллекторных напряжений и отклонение стрелки индикатора. Изменяя сопротивление резистора RЗ, можно в довольно широких пределах регулировать чувствительность прибора.

Если прибор предполагается применять в основном для обнаружения солнца или в системе охранной сигнализации, то целесообразно у транзистора VТ1 спилить верхушку корпуса. Тогда его Р-N-переход сможет подвергаться непосредственному падению инфракрасного излучения. При этом повысится чувствительность к коротковолновой части инфракрасного спектра.

Возможная компоновка прибора показана на рисунке 2. Транзистор VТ1 устанавливается в фокусе рефлектора от крупного электрического фонаря. В самом корпусе фонаря можно разместить всю схему и два элемента питания типа LRОЗ.

Вот как пользоваться прибором. Сначала направьте его на явно пустое место и сбалансируйте измерительный мостик на ноль, подбирая положение ползунка резистора R6. (При первых опытах резистор RЗ должен находиться в среднем положении.) Затем рефлектор направьте на розетку или выключатель. Эти места чаще других бывают слегка нагреты, и вы заметите отклонение стрелки индикатора. После этого, поняв, как прибор работает, можно проверять участки скрытой проводки. Отклонение стрелки укажет на неблагополучное ее состояние. К этому сигналу следует отнестись со всей серьезностью. Стоит вскрыть проводку и разобраться в причинах нагрева. Разумеется, это дело хлопотное, но в случае возгорания проводки хлопот будет больше.

Заметим, что «инфракрасным глазом» можно определять слабые места в теплоизоляции окон и стыков стен. Здесь поступающий холод обнаруживается по ослаблению ИК-излучения окрестных участков стены. С этой целью индикатору задается резистором R6 некоторое отклонение стрелки, которое будет уменьшаться при приближении “инфракрасного глаза” к более холодному участку. Для предохранения индикатора Р1 от токовой перегрузки манипуляции резистором R6 следует проводить потоньше.

Но вот «инфракрасный глаз» готов и время от времени исполняет свою функцию. А в промежутках между ревизиями он, как и большинство домашних контрольных приборов, пребывает в бездействии.

Понятно стремление каждого любителя расширить функции прибора. Потребуется совсем немного, чтобы сообщить ему новые полезные качества. С этой целью в исходную схему введите трехцепевой, на три положения галетный переключатель SА1.1…SА1.3 (рис. 3). В положении «1» устройство работает в полном соответствии с рисунком 1, исследуя ИК-излучения. В положении «2» питание ИК-прибора отсоединяется, переключаясь на цепь с токоограничивающим резистором R9, индикатором Р1 и щупами X1 — это позволит производить «прозвонку» цепей бытовых приборов для поиска обрывов и коротких замыканий. В положении «3» реализуется функция отбраковки «пальчиковых» гальванических элементов типоразмеров АА и ААА. Те из них, что работают в карманных фонарях, электронных фотоаппаратах, СD-плейерах, довольно скоро перестают действовать из-за резкого снижения напряжения. Однако в них сохраняется еще достаточно емкости, чтобы неплохо поработать при небольшой нагрузке в радиоприемниках. Проверка пригодности для облегченного режима состоит в нагружении элемента током порядка 20 мА, при этом стрелка индикатора должна быть вблизи крайнего положения. С такой целью у нас имеется нагрузочный резистор R8, а резистор R7 гасит излишек напряжения на индикаторе. Нетрудно видеть, что в режиме тестирования источник GВ1 прибора не расходуется, поэтому положение «3» переключателя удобно, когда прибор бездействует.
Для кратковременного присоединения к контрольному узлу испытуемых гальванических элементов на корпусе прибора следует установить две пары контактных лепестков Х2.

Вспомним то, о чем говорили вначале: «инфракрасный глаз» полезен в походе, чтобы найти солнце, скрывшееся за облаками. А еще он может быть датчиком в простейшей системе охраны, основанной на пересечении невидимого инфракрасного луча. Но здесь к прибору потребуются некоторые дополнения.
Ю. ПРОКОПЦЕВ. Журнал Юный техник №9-04г.

Оставить комментарий:

XHTML: Вы можете использовать теги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>